Gas Permeability and Permselectivity of Plasma-Treated Polypropylene Membranes

T. Teramae, H. Kumazawa

Department of Chemical Process Engineering, University of Toyamay, 3190 Gofuku, Toyama 930-8555, Japan

Received 11 April 2006; accepted 25 August 2006 DOI 10.1002/app.25951 Published online 8 March 2007 in Wiley InterScience (www.interscience.wiley.com).

ABSTRACT: The effects of NH₃-plasma and N₂-plasma treatment on rubbery polypropylene (PP) membrane upon permeation behavior for CO₂, O₂, and N₂ were investigated from their permeability measurements. The NH₃-plasma and N₂-plasma treatment on PP membranes could increase both the permeability coefficient for CO₂ and the ideal separation factor for CO₂ relative to N₂. For O₂ transport, both the permeability coefficient for O₂ and the ideal separation factor for O₂ relative to N₂ also increased. NH₃-plasma and N₂-plasma treatment on PP membranes

possibly brings about an augmentation of permeability for CO_2 and permselectivity of CO_2 relative to N_2 simultaneously, but unfortunately the plasma-treated PP membrane does not reach the level of CO_2 separation membrane. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3236–3239, 2007

Key words: carbon dioxide; polypropylene membrane; plasma modification; permeability coefficient; ideal separation factor

INTRODUCTION

Ever-increasing fossil fuel consumption has been causing atmospheric buildup of carbon dioxide (CO₂). CO_2 , which is exhausted in massive amount, has been recognized as one of the most influential greenhouse gases. The fixation and removal of CO₂ from fossil fuel combustion facilities has been considered as a promising way to prevent CO₂ buildup in the atmospheric sphere. One possible process for this purpose is membrane-based separation. It was expected that the surface modification to the membrane by NH₃ plasma treatment, among others, would possibly induce an increase in the permeability to CO₂ through an interaction of dissolved CO₂ with the basic functional group (e.g., $-NH_2$) by the treatment), whereas it would exert negligible influence on the permeability to N_2 , As a result, the plasma treatment would induce increases in both the permeability coefficient for CO₂ and the separation factor for CO_2 relative to N_2 . In our preceding works,^{1–3} the effects of NH_3 -

In our preceding works,^{1–3} the effects of NH_3 plasma treatment on two kinds of glassy polymer membranes on the diffusion process for penetrant gases, CO_2 , O_2 , and N_2 have been discussed; glassy poly(phenylene oxide) (PPO) membrane,¹ which has highly chemical and thermal stability and poly (methyl methacrylate) (PMMA) membrane² and poly

Journal of Applied Polymer Science, Vol. 104, 3236–3239 (2007) © 2007 Wiley Periodicals, Inc.

(ether sulfone) (PES) membrane,³ both of which have been recognized to exhibit high permeability to CO₂. The sorption equilibria and permeation behavior for O_2 and CO_2 in untreated PPO membranes were simulated well in terms of the dual-mode sorption and mobility model. For O₂ transport, the NH₃-plasma treatment on PPO membrane had an influence on the diffusion process of Henry's law species, whereas for CO₂ transport, it promoted the transport of Langmuir mode, presumably through an increased Langmuir capacity constant for CO₂. The mean permeability coefficients for CO₂ in PMMA membrane decreased with increasing upstream pressure up to \sim 0.9 MPa, and the pressure dependency of mean permeability coefficient in this region could be interpreted by a dual-mode mobility model. Above 1.0 to 1.2 MPa of upstream pressure, the logarithmic permeability coefficients in treated as well as untreated membranes increased linearly with the upstream pressure, presumably due to the plasticization action of sorbed CO₂. The mean permeability coefficients for O₂ and N₂ substantially remain constant irrespective of the upstream pressure. For O₂ transport, the permeability increases a little with increasing treatment power, and for N2 transport, it was not affected by the treatment power. For CO₂ transport, NH₃-plasma treatment promoted the transport of Langmuir mode, presumably through an increased Langmuir capacity constant for CO₂, whereas it had only an influence on the mobility of Henry's law species. The permeation behavior for O₂ and CO₂ in untreated and NH₃-plasma-treated PES membranes was also simulated well in terms of the dual-mode mobility model. For O2 transport, NH3-

Correspondence to: H. Kumazawa (kumazawa@eng. u-toyama.ac.jp).

plasma treatment on PES membrane had a little influence on the diffusion process of Langmuir species, and very little influence on the diffusion process of Henry's law species. For CO₂ transport, it promoted the transport of Henry's law mode, but had very little influence on the transport process of Langmuir species. Both the mean permeability coefficient to CO₂ and the ideal separation factor for CO₂ relative to N₂ took maximum values at a treatment power of 40 W.

The NH₃-plasma treatment to PPO, PMMA, and PES membranes resulted in an increase in the ideal separation factor of CO_2 relative to N_2 as well as the permeability to CO_2 . It is desirable that this speculation for CO_2 transport through NH₃-plasma-treated glassy polymer membrane is confirmed also for rubbery polymer membranes as well as the other glassy polymer ones.

In the other preceding work,⁴ NH₃-plasma and N₂-plasma treatment was applied on a typical rubbery polymer membrane, polyethylene (PE) membrane under plasma discharge powers up to 100 W and a plasma exposure time of 1 min. The degrees of improvement of both permeability for CO₂ and permselectivity for CO₂ relative to N₂ induced by NH₃-plasma and N₂-plasma treatment were investigated from measurements of permeability coefficients to CO₂ and N₂. As a result, NH₃-plasma and N₂plasma treatment on PE membranes could increase both the permeation coefficient for CO₂ and the ideal separation factor for CO₂ relative to N₂. NH₃ and N₂ plasma treatment on rubbery polymer membranes also possibly brings about an augmentation of CO2 permeability and separation factor for CO₂ relative to N_2 simultaneously.

In the present work, thus, a similar surface modification by plasma treatment was executed on the other typical rubbery polymer membrane, polypropylene (PP) membrane. The degrees of improvement of both permeability for CO_2 and permselectivity for CO_2 relative to N_2 induced by NH_3 -plasma and N_2 plasma treatment were investigated from measurements of permeability coefficients to CO_2 and N_2 .

EXPERIMENTAL

Homogeneous dense polypropylene (PP) membrane used was supplied from Tosero Co., Japan. The glass-transition temperature was reported to be -35° C by the manufacturer.

The plasma treatment was performed in a flow-type cylindrical plasma reactor with an external electrode (Yamato, PR-510A), employed in our preceding works.^{1–3} The internal diameter and length of the reactor are 21.5 and 27.5 cm, respectively. N_2 as well as NH₃ balanced with N₂ at 2010 ppm was used as the treatment gas, and the flow rate was maintained at

10 cm³ (STP)/min. The glow discharge was generated under a pressure of 0.5 mm Hg at a fixed frequency of 13.56 Hz. The electric power of discharge was varied up to 100 W. The duration of plasma discharge was fixed at 1 min and 5 min. Argon (Ar) was used as a cleansing gas for the plasma reactor.

The steady-state permeation rates for CO_2 , O_2 , and N_2 through PP membranes with and without treated NH₃-plasma and N₂-plasma were measured at a constant temperature of 30°C by a variable-volume method employed by Stern et al.⁵ The gas to be permeated was fed into the upstream side, whereas the downstream side was filled with the same gas at an atmospheric pressure. The volumetric flow rate through the membrane to the downstream side was measured by observing the displacement of a small amount of 1-propanol in a capillary tube connected to the downstream pressure side. The permeability coefficient was calculated from this steady-state permeation rate. The permeation area of the cell was 19.6 cm².

RESULTS AND DISCUSSION

The experimental results on permeability coefficients for CO_2 , O_2 , and N_2 in the untreated PP membrane at $30^{\circ}C$ were plotted against the upstream pressure in Figure 1. It is apparent that the permeability coefficients for these gases are almost independent of the upstream pressure, characteristic of typical rubbery polymer membranes. In both NH₃-plasma-treated and N₂-plasma-treated PP membranes, the permeability coefficients for these three gases were also almost independent of the upstream pressure up to 1.2 MPa.

Figure 2 shows the relationship between the permeability coefficients for CO_2 , O_2 , and N_2 in NH_3 plasma-treated PP membrane and the plasma dis-

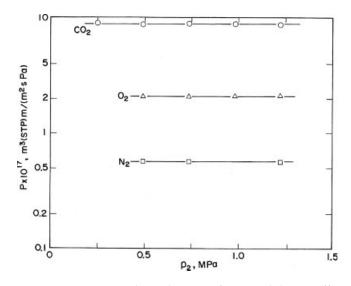


Figure 1 Pressure dependencies of permeability coefficients for CO₂, O₂, and N₂ in untreated PP membrane at 30° C.

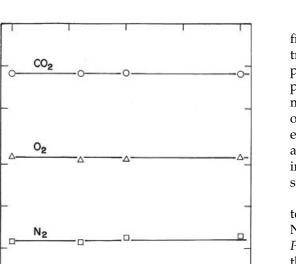
Journal of Applied Polymer Science DOI 10.1002/app

20

10

5

2


I

0.5

0.2

charge duration of 1 min.

Px10¹⁷, m³(STP) m/(m² s Pa)

0.1 0 50 100 150 200 Plasma discharge power, W Figure 2 Relationship between gas permeability coefficient and plasma discharge power at a NH₃-plasma dis-

charge power up to 200 W at a plasma exposure time of 1 min. The effect of NH_3 -plasma treatment on the gas permeability coefficients is shown to be negligibly small.

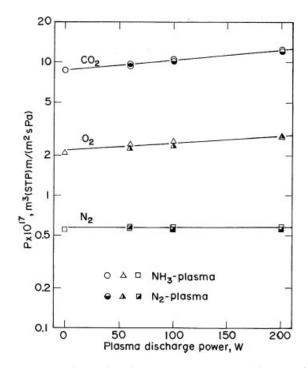
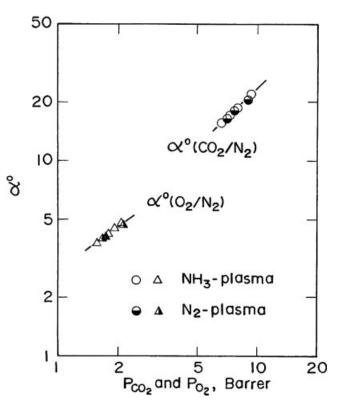



Figure 3 Relationship between gas permeability coefficient and plasma discharge power at NH_3 -plasma and N_2 -plasma discharge duration of 1 min.

Figure 3 indicates the relations of permeability coefficients for CO₂, O₂, and N₂ in both NH₃-plasmatreated and N₂-plasma-treated PP membranes to the plasma discharge power up to 200 W at a plasma exposure time of 5 min. The effect of NH₃-plasma treatment is found to be very similar to that of N₂-plasma on the gas permeability coefficients. It should be emphasized here that the permeability to N₂ is not affected by the plasma treatment, whereas with increasing plasma discharge power at a plasma exposure time of 5 min, those to CO₂ and O₂ increase.

Next, the ideal separation factors for CO₂ relative to N₂, $\alpha^{o}(CO_2/N_2)$, and for O₂ relative to N₂, $\alpha^{o}(O_2/N_2)$, which are defined by permeability ratio, P_{CO_2}/P_{N_2} and P_{O_2}/P_{N_2} , respectively, were plotted against the permeability coefficients P_{CO_2} and P_{O_2} in Figure 4. This figure clearly reveals that with increasing permeability coefficient, the ideal separation factor for CO₂ relative to N₂ is somewhat improved when compared with that for O₂ relative to N₂. The NH₃plasma treatment on the PP membrane tends to induce considerable increase in both the permeability for CO₂ and the permselectivity of CO₂ relative to N₂, simultaneously. The N₂-plasma treatment also induces the similar promotion effect.

Figure 4 Relations of ideal separation factors for CO₂ relative to N₂ and for O₂ relative to N₂ to permeability coefficients for CO₂ and O₂, respectively, in NH₃-plasma-treated and N₂-plasma-treated PP membranes at an exposure time of 5 min at 30° C.

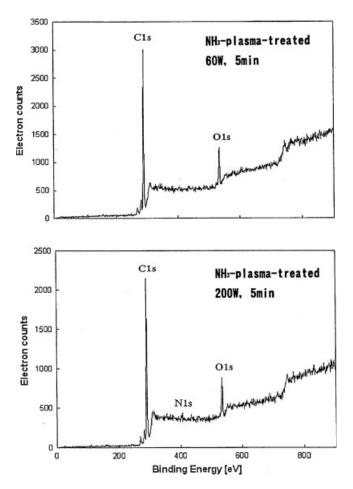


Figure 5 ESCA spectra of NH_3 -plasma-treated PP membranes.

The direction of research and development (R and D) for CO_2 separation membranes is a simultaneous increase in both increases in CO_2 permeability and ideal separation factor for CO_2 relative to N_2 . Actually, the NH₃- and N₂-plasma treatment on the PP membrane brings about both increases in CO_2 permeability and separation factor for CO_2 relative to N₂ simultaneously. Such a trend coincides with the direction of R and D. But unfortunately, NH₃- and N₂-plasma-treated PP membranes do not reach the level of the CO_2 separation membrane.

Figure 5 reveals the ESCA spectra of PP membranes with treated NH₃-plasma, where the plasma treatment was executed at powers of 60 and 200 W for 5 min. With the PP membrane treated at a power of 200 W, a slight but definite peak of N1s appears at a binding energy of 400–405 eV, presumably based on the NH₂ group, whereas the membrane treated at 60 W has no N1s peak there. The solubility of CO₂ in the NH₃-plasma-treated PP membrane can be augmented through an interaction with the basic functional group, NH₂. In case of CO₂ transport in NH₃-plasma treated PPO membranes,¹ such an increase was observed and interpreted qualitatively by the interaction of sorbed CO₂ with basic groups generated by NH₃-plasma treatment as follows:

Sorbed CO_2 (A) is assumed to react reversibly with the basic groups (B) (A + B = AB), so that at an equilibrium

$$K = [AB]_{e} / ([A]_{e}[B]_{e}) = ([B]_{0} - [B]_{e}) / ([A]_{e}[B]_{e})$$
(1)

where *K* refers to the equilibrium constant, subscript *e* to the concentration at an equilibrium and subscript 0 to the initial value. The total concentration of sorbed CO_2 at the equilibrium, [A]_{tot} can be given as

$$A]_{tot} = [A]_e + [AB]_e = [A]_e + K[B]_0[A]_e / (1 + K[A]_e)$$
(2)

The above equation implies that the solubility coefficient for CO_2 in PP membrane is augmented by NH_3 -plasma treatment. Thus, the permeability coefficient to CO_2 can be increased, while that to N_2 remains unchanged. The permeability coefficient to O_2 can also be increased as shown in Figure 3, although the interaction of sorbed O_2 with the NH_2 group has not been understood yet.

CONCLUSIONS

NH₃-plasma and N₂-plasma treatment on PP membranes with a plasma exposure time of 5 min can increase both the permeation coefficient for CO_2 and the ideal separation factor for CO_2 relative to N₂. Such a favorable trend coincides with the direction of R and D for CO_2 separation membranes. NH₃ and N₂ plasma treatment on polymer membranes possibly brings about an augmentation of permeability and permselectivity simultaneously.

NOMENCLATURE

Permeability coefficient [m ³ (STP) m/
(m ² s Pa)] or (Barrer), [1 Barrer
$= 1.33 \times 10^{-17} \mathrm{m^3}(\mathrm{STP})\mathrm{m}/(\mathrm{m^2}\mathrm{s}\mathrm{Pa})$
Pressure of penetrant gas, (Pa) or (MPa)
Ideal separation factor defined by
permeability coefficient ratio

Subscript

2

upstream side of membrane

References

- 1. Kumazawa, H.; Yoshida, M. J. Appl Polym Sci 2002, 78, 1845.
- Yamamoto, Y.; Maegawa, M.; Kumazawa, H. J Appl Polym Sci 2003, 87, 1068.
- 3. Iwa, T.; Kumazawa, H. J Appl Polym Sci 2004, 94, 758.
- 4. Nakata, M.; Kumazawa, H. J Appl Polym Sci 2006, 101, 383.
- Stern, S. A.; Gareis, P. J.; Sinclair, T. F.; Mohr, P. H. J Appl Polym Sci 1963, 7, 2935.